首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49835篇
  免费   9697篇
  国内免费   11651篇
测绘学   4628篇
大气科学   11814篇
地球物理   9548篇
地质学   20455篇
海洋学   7448篇
天文学   7506篇
综合类   3020篇
自然地理   6764篇
  2024年   132篇
  2023年   618篇
  2022年   1456篇
  2021年   1723篇
  2020年   1865篇
  2019年   2086篇
  2018年   1785篇
  2017年   1958篇
  2016年   1974篇
  2015年   2243篇
  2014年   2921篇
  2013年   3202篇
  2012年   3236篇
  2011年   3489篇
  2010年   2976篇
  2009年   3788篇
  2008年   3604篇
  2007年   3924篇
  2006年   3713篇
  2005年   3302篇
  2004年   2974篇
  2003年   2656篇
  2002年   2324篇
  2001年   1969篇
  2000年   1807篇
  1999年   1570篇
  1998年   1511篇
  1997年   1058篇
  1996年   941篇
  1995年   888篇
  1994年   815篇
  1993年   689篇
  1992年   491篇
  1991年   353篇
  1990年   234篇
  1989年   221篇
  1988年   172篇
  1987年   119篇
  1986年   78篇
  1985年   71篇
  1984年   50篇
  1983年   30篇
  1982年   28篇
  1981年   30篇
  1980年   21篇
  1979年   18篇
  1978年   11篇
  1977年   24篇
  1976年   5篇
  1954年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
利用近7万个湖南及邻近省份重力观测数据、502个GNSS/水准控制点及数字高程模型,以EIGEN-6C4全球重力场模型作参考重力场,采用顾及地球曲率影响的各类地形质量位及引力的第二类Helmert凝集法严密算法,利用高分辨率地形数据恢复甚短波扰动重力场,确定空间分辨率2′×2′的高精度湖南省似大地水准面模型(HNGG2017)。经外部检核,模型整体精度均优于±0.022 m。与历史模型相比,新模型在湖南北部常德汉寿、西南部永州江永等地区精度得到显著改善。  相似文献   
82.
采用香港11个GPS测站的观测资料进行1 h、2 h、3 h和4h静态PPP解算,获得4组PPP坐标序列,利用调和分析求取11个测站处8个主要分潮的负荷位移参数(振幅和相位),将其与海潮模型计算的负荷位移参数进行对比,并比较分析PPP反演值与海潮模型值改正海潮负荷信号的效果。结果表明,垂直和水平方向上,不同PPP结果反演8个分潮的负荷位移分别具有约5 mm和7 mm的差异;PPP反演8个分潮垂向负荷位移优于全球海潮模型,但水平方向上的反演效果稍弱。  相似文献   
83.
首先利用ALOS PALSAR数据,通过D-InSAR技术获取2007-06-03云南宁洱MS6.4地震的同震形变场,然后基于Okada弹性半空间位错模型反演该地震的断层几何以及精细滑动分布,最后计算宁洱地震后周边断层的静态库仑应力变化。结果表明,形变主要集中在西盘,最大视线向形变量为51.6 cm;反演得到的震源位置为23.05°N、101.02°E,深度3 km,断层走向145°,倾向49.5°,平均滑动角153°,发震断层为NNW向普洱断裂,断层活动以右旋走滑为主,兼具逆冲分量;断层面最大滑动量为1.2 m,反演得到的震级为MW619。基于库仑应力场发现,磨黑断裂处于库仑应力增加区域,而2014年景谷地震位于负值区域。结合实地考察资料和反演结果表明,宁洱地震为浅源地震,但断层并未出露地表。  相似文献   
84.
将微粒群算法与位错理论模型相结合,采用中国地壳运动观测网络提供的青藏高原地区2001~2004年GPS测量数据和2000~2006年水准测量数据,通过常规定权和附有相对权比的方法对祁连山北缘断裂的三维滑动速率进行联合反演,并与蚁群算法反演结果进行对比。结果表明,微粒群算法收敛速度快、稳定性高,结合经典位错理论模型,是一种可以有效求解断层三维滑动速率反演问题的优化算法,在大地测量反演领域极具应用潜力。  相似文献   
85.
When travelling, people are accustomed to taking and uploading photos on social media websites, which has led to the accumulation of huge numbers of geotagged photos. Combined with multisource information (e.g. weather, transportation, or textual information), these geotagged photos could help us in constructing user preference profiles at a high level of detail. Therefore, using these geotagged photos, we built a personalised recommendation system to provide attraction recommendations that match a user's preferences. Specifically, we retrieved a geotagged photo collection from the public API for Flickr (Flickr.com) and fetched a large amount of other contextual information to rebuild a user's travel history. We then created a model-based recommendation method with a two-stage architecture that consists of candidate generation (the matching process) and candidate ranking. In the matching process, we used a support vector machine model that was modified for multiclass classification to generate the candidate list. In addition, we used a gradient boosting regression tree to score each candidate and rerank the list. Finally, we evaluated our recommendation results with respect to accuracy and ranking ability. Compared with widely used memory-based methods, our proposed method performs significantly better in the cold-start situation and when mining ‘long-tail’ data.  相似文献   
86.
Exploring the chemical characterization of dissolved organic matter (DOM) is important for understanding the fate of laterally transported organic matter in watersheds. We hypothesized that differences in water-extractable organic matter (WEOM) in soils of varying land uses and rainfall events may significantly affect the quality and the quantity of stream DOM. To test our hypotheses, characteristics of rainfall-runoff DOM and WEOM of source materials (topsoil from different land uses and gullies, as well as typical vegetation) were investigated at two adjacent catchments in the Loess Plateau of China, using ultraviolet–visible absorbance and excitation emission matrix fluorescence with parallel factor analysis (PARAFAC). Results indicated that land-use types may significantly affect the chemical composition of soil WEOM, including its aromaticity, molecular weight, and degree of humification. The PARAFAC analysis demonstrated that the soils and stream water were dominated by terrestrial/allochthonous humic-like substances and microbial transformable humic-like fluorophores. Shifts in the fluorescence properties of stream DOM suggested a pronounced change in the relative proportion of allochthonous versus autochthonous material under different rainfall patterns and land uses. For example, high proportions of forestland could provide more allochthonous DOM input. This study highlights the relevance of soils and hydrological dynamics on the composition and fluxes of DOM issuing from watersheds. The composition of DOM in soils was influenced by land-use type. Precipitation patterns influenced the proportion of terrestrial versus microbial origins of DOM in surface runoff. Contributions of allochthonous, terrestrially derived DOM inputs were highest from forested landscapes.  相似文献   
87.
The longitudinal functional connectivity of a river–lake–marsh system (RLMS) refers to the actual water-mediated transport of material from upstream to downstream areas along a spatial gradient and is fundamental to understand hydrological and biogeochemical cycles. However, due to a lack of consensus on appropriate data and methods, the quantification of connectivity is still a challenge, especially at the catchment scale. We developed a new method to evaluate longitudinal functional connectivity based on fluxes of materials (water, sediment, and chemicals) along a RLMS. The calculation of fluxes is based on the longitudinal pattern of terrain gradient, which influences transport efficiency, and on contributions from hillslopes, which set the initial spatial template of material loading to the RLMS. We evaluate the contributions from hillslopes to RLMS based on a new modified version of the index of sediment connectivity (IC) proposed by Borselli et al. (2008) and revised by Chartin et al. (2017).We applied this method to the Baiyangdian Basin covering an area of 3.4 × 104 km2 in China and quantified longitudinal functional connectivity during normal, wet, and dry periods(April, July and December) in year 2016. We found that areas with good structural connectivity exhibited poor functional connectivity during the normal and dry periods. Modelling testing with discharge data from hydrological stations and measured chemicals from Baiyangdian Lake was satisfactory in test periods. We conclude that public data and Digital Elevation Model-derived information can be used to reliably map the longitudinal functional connectivity of RLMSs. The proposed method provides a useful tool for monitoring and restoring the longitudinal functional connectivity of RLMSs and our results indicate that efforts aimed at restoring functional connectivity in RLMSs should take into account landscape patterns that can greatly influence fluxes in the watershed.  相似文献   
88.
The dynamic responses of wetlands to upstream water conservancy projects are becoming increasingly crucial for watershed management. Poyang Lake is a dynamic wetland system of critical ecological importance and connected with the Yangtze river. However, in the context of disturbed water regime in Poyang Lake resulting from human activities and climate change, the responses of vegetation dynamics to the Three Gorges Dam (TGD) have not been investigated. We addressed this knowledge gap by using daily water level data and Landsat images from 1987 to 2018. Landsat images were acquired between October and December to ensure similar phenological conditions. Object-oriented Artificial Neural Network Regression for wetland classification was developed based on abundant training and validation samples. Interactions between vegetation coverage and water regimes pre and post the operation of the TGD were compared using classification and regression trees and the random forest model. Since the implementation of the TGD in 2003, Poyang Lake has become drier, especially during the dry season. A more rapid plant growth rate was observed post TGD (44.74 km2 year−1) compared to that of the entire study period (12.9 km2 year−1). Average water level for the antecedent 20 days most significantly affected vegetation before 2003, whereas average water level for the antecedent 5 or 10 days was more important after 2003. The impoundment of the TGD after the flood season accelerated the drawdown processes of Poyang Lake, and the rapidly exposed wetlands accelerated vegetation expansion during the dry seasons, resulting in shrinkage and degradation of the lake area. This study deepens our knowledge of the influences of newly developed dams on lakes and rivers.  相似文献   
89.
In 1967, the original Walker Branch Watershed (WBW) project was established to study elemental cycling and mass balances in a relatively unimpacted watershed. Over the next 50+ years, findings from additional experimental studies and long-term observations on WBW advanced understanding of catchment hydrology, biogeochemistry, and ecology and established WBW as a seminal site for catchment science. The 97.5-ha WBW is located in East Tennessee, USA, on the U.S. Department of Energy's Oak Ridge Reservation. Vegetation on the watershed is characteristic of an eastern deciduous, second-growth forest. The watershed is divided into two subcatchments: the West Fork (38.4 ha) and the East Fork (59.1 ha). Headwater streams draining these subcatchments are fed by multiple springs, and thus flow is perennial. Stream water is high in base cations due to weathering of dolomite bedrock and nutrient concentrations are low. Long-term observations of climate, hydrology, and biogeochemistry include daily (1969–2014) and 15-min (1994–2014) stream discharge and annual runoff (1969–2014); hourly, daily, and annual rainfall (1969–2012); daily climate and soil temperature (1993–2010); and weekly stream water chemistry (1989–2013). These long-term datasets are publicly available on the WBW website (https://walkerbranch.ornl.gov/long-term-data/ ). While collection of these data has ceased, related long-term measurements continue through the National Ecological Observatory Network (NEON), where WBW is the core terrestrial and aquatic site in the Appalachian and Cumberland Plateau region (NEON's Domain 7) of the United States. These long-term datasets have been and will continue to be important in evaluating the influence of climatic and environmental drivers on catchment processes.  相似文献   
90.
青岛台体应变短周期(小于128 min)气压系数2018-01出现阶变,通过对观测系统、台站周边施工情况、监测环境等逐项现场核实,排除观测系统、周边施工的影响。利用离散小波变换和回归分析发现,钻孔水位的气压系数与体应变气压系数同步阶变,结合台站钻孔施工当天体应变钻孔水位变化、体应变趋势变化、其他相邻台站水位气压系数变化等数据认为,台站钻孔施工是导致体应变气压系数变化的原因,并定性分析其变化机理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号